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Abstract: Botulinum toxin type A is a high molecular weight protein complex containing active 

neurotoxin and complexing proteins, the latter of which, it is believed, protect the neurotoxin 

when in the gastrointestinal tract, and may facilitate its absorption. Comparisons of conventional 

botulinum toxin type A drugs that include complexing proteins with the complexing protein-

free formulation of Xeomin® strongly suggest that complexing proteins do not affect diffusion 

of the active neurotoxin. Studies of Xeomin have also shown that complexing proteins do not 

enhance product stability in storage. However, complexing proteins may stimulate antibody 

development against botulinum toxin type A. Numerous observational studies have been 

published showing that some patients receiving conventional botulinum toxin may develop 

neutralizing antibodies, leading to antibody-induced therapy failure. Studies have shown that 

Xeomin is not associated with the development of neutralizing antibodies in animal models or 

in patients. In conclusion, complexing proteins do not contribute to the stability of botulinum 

toxin type A drugs and do not contribute to their therapeutic effects, but may be associated with 

a secondary nonresponse due to the development of neutralizing antibodies.

Keywords: botulinum toxin type A, neurotoxin, complexing proteins, neutralizing 

antibodies

Introduction
Commercial pharmaceutical preparations of botulinum toxin type A are an effective 

treatment for a large number of disorders resulting from increased muscle tone, such 

as cervical dystonia, hemifacial spasm, and blepharospasm.1 In addition, botulinum 

toxin type A is effective for the treatment of axillary and palmar hyperhidrosis2 and 

urologic disorders,3 and is associated with a high level of patient satisfaction when 

used in facial esthetic procedures.4

The active botulinum toxin (150 kDa) occurs naturally as part of a high molecular 

weight complex containing the neurotoxin moiety and a set of complexing proteins 

of clostridial origin.5 The proteins are also called neurotoxin-associated proteins.6 

 Conventional botulinum toxin type A drugs, including Botox® (Vistabel®, onabotuli-

numtoxin A; Allergan Inc, Irvine, CA) and Dysport® (Azzalure®, abobotulinumtoxinA; 

Ipsen Ltd, Berkshire, UK), contain these complexing proteins in addition to the 

 neurotoxin.7 More recently, a botulinum toxin type A-containing pharmaceutical 

preparation free from complexing proteins has been developed called Xeomin® (also 

known as incobotulinumtoxinA, NT 201, botulinum toxin type A [150 kDa], free from 

complexing proteins, Bocouture®; Merz Pharmaceuticals GmbH, Frankfurt, Germany). 

For the following discussion, the products will be referred to as Botox, Dysport, and 
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Xeomin, regardless of their clinical indication. This new 

preparation is derived from a wild-type strain of Clostridium 

botulinum type A (ATCC 3502), and it contains only the 

active botulinum toxin type A with no complexing proteins7 

and has similar biologic activity to Botox.8 In comparative 

clinical trials, the efficacy and tolerability of Xeomin were 

noninferior to that of conventional botulinum toxin type A 

drugs.9,10 For example, the efficacy of Xeomin was compared 

with that of Botox in a 16-week randomized, double-blind, 

noninferiority trial in 463 patients with cervical dystonia.9 

Both treatments significantly improved the Toronto  Western 

Spasmodic Torticollis Rating Scale (TWSTRS) severity 

score compared with baseline, and noninferiority of Xeomin 

versus Botox was demonstrated.9 The TWSTRS represents 

the standard method to quantify cervical dystonia and is a 

sum of subscores for the rating of maximal excursion of the 

head, duration, and other symptoms. No clinically relevant 

differences between the two treatments were observed for any 

secondary efficacy variable or with regard to adverse events. 

Similarly, a randomized, double-blind study of Xeomin and 

Botox in 300 patients with blepharospasm found that both 

treatments significantly reduced the Jankovic Rating Scale 

(JRS) score from baseline, displaying noninferiority of 

Xeomin.10 The JRS is a standard rating scale which allows 

the quantification of typical symptoms of blepharospasm. 

Again, there were no significant differences between Xeomin 

and Botox on any efficacy or safety measure.

The purposes and effects of complexing proteins in 

botulinum toxin type A preparations are unclear, although 

suggested purposes include stabilization of the neurotoxin 

and enhancement of gastrointestinal uptake, and suggested 

effects include delay of botulinum toxin diffusion into adja-

cent tissues11 and formation of neutralizing antibodies against 

botulinum toxin type A, leading to subsequent treatment 

failure.6,12 This article reviews the literature and presents 

the latest thoughts on the role of complexing proteins in 

botulinum toxin type A preparations.

Structure and role  
of complexing proteins
In all naturally occurring serotypes of botulinum toxin 

(types A–G), the neurotoxin is noncovalently associated with 

complexing proteins and thus forms toxin complexes.13,14 

Complexing proteins are encoded in two gene clusters located 

close to each other on the C. botulinum chromosome.15,16 

The first cluster encodes botulinum toxin itself plus a 

nontoxic, nonhemagglutinin (NTNHA) protein, while the 

second encodes three hemagglutinin (HA) proteins (HA1, 

HA2, and HA3), with HA3 being cleaved in serotype A 

post-translationally into two smaller components (HA3a and 

3b). In botulinum toxin serotypes A–D and G, these com-

ponents form two different toxin complexes, ie, a medium 

toxin complex comprising botulinum toxin and NTNHA 

(300 kDa) and a large toxin complex that also includes the 

three HA molecules (500–600 kDa).5 In contrast, serotypes E 

and F produce only the medium toxin complex.13 Serotype A 

also forms a third complex with a higher molecular weight 

(900 kDa).5 The detailed molecular structure of botulinum 

toxin type D large toxin complex has been visualized and 

comprises a 14-subunit complex of neurotoxin, NTNHA, 

three HA3 molecules (a 70 kDa molecule, also known as 

HA-70), three HA2 (also known as HA-17), and six HA1 

(also known as HA-33, Figure 1).13 A denaturing capillary 

electrophoresis method was used to determine the subunits 

forming the very large/or higher molecular weight toxin 

complex of botulinum toxin type A, concluding that it con-

tains single copies of the 150 kDa neurotoxin and NTNHA 

subunits, as well as 5–6 HA-17, 4–5 HA-23, 3–4 HA-48, and 

8–9 HA-34 subunits, with a total mass of 880–1000 kDa.17

In nature, complexing proteins appear to have a number 

of functions. Based on differences in oral toxicity between 

NTNHA

BoNT

Zn2+

HA-70

HA-17

HA-33

Figure 1 Arrangement of components in botulinum toxin type D complex. 
Botulinum toxin is highlighted in red, the nontoxic, nonhemagglutinin protein in 
green, three HA-70 in yellow, six HA-33 in blue, and three HA-17 in cyan. The 
catalytic zinc ion in botulinum toxin is indicated by the orange circle and the arrow. 
Copyright© 2009 The American Society for Biochemistry and Molecular Biology. 
All rights reserved. Reproduced with permission from Hasegawa K, watanabe T, 
Suzuki T, et al. A novel subunit structure of Clostridium botulinum serotype D toxin 
complex with three extended arms. J Biol Chem. 2007;282:24777–24783.13 
Abbreviations: BoNT, botulinum toxin; NTNHA, nontoxic, nonhemagglutinin 
protein.
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toxin complexes of different sizes, it was initially suggested 

that the function of complexing proteins was the protection 

of the botulinum toxin moiety when in the gastrointestinal 

tract.18 This was subsequently confirmed in biochemical 

analyses (protease resistance) of different toxin species.19 

It has also been suggested that complexing proteins may 

stabilize the biologic activity of the neurotoxin in vivo and 

facilitate adherence to muscle tissue.20 In addition, com-

plexing proteins may have a role in limiting the diffusion of 

botulinum toxin out of the target tissues, due to the large size 

of the toxin complex.11,21,22 However, it was found that there 

was no difference in the diffusion of the free or complexed 

form after injection into the muscle.23 Orally ingested botu-

linum toxin must cross the epithelium of the gastrointestinal 

tract before it can affect muscle, and a role for complexing 

proteins in the uptake and transcytosis of botulinum toxin 

through the intestinal epithelium has been suggested.14,24 In 

the therapeutic setting, where botulinum toxin type A is not 

delivered orally, the roles of complexing proteins in protec-

tion from gastric pH extremes, resistance against stomach 

and intestinal proteases, and transport across the intestinal 

epithelium are not relevant to clinical efficacy. However, 

it should be noted that the lack of complexing proteins in 

Xeomin leads to a marked decrease in oral bioavailability 

and toxicity.25

While it is conceivable that complexing proteins are 

involved in botulinum toxin stability and in limiting 

botulinum toxin diffusion from the injection site (thereby 

minimizing adverse events), comparison of the complexing 

protein-free drug Xeomin with conventional botulinum 

toxin type A drugs suggests that this is not the case.26–28 To 

evaluate the role of complexing proteins, the stability of 

the 900 kDa botulinum toxin type A was analyzed using 

ion-exchange chromatography under various physiologic 

pH conditions.26,27 The 900 kDa toxin complex eluted as a 

single fraction at pH 6.0, but increasingly dissociated into 

several fractions as the pH value of the eluent increased.27 

At physiologic pH values, the active 150 kDa neurotoxin is 

efficiently released in less than one minute from the 900 kDa 

complex by a shift of the complex association-dissociation 

equilibrium to unbound 150 kDa neurotoxin.29 This is in 

contrast with the time to onset of therapeutic effect, which 

is measured in days. Therefore, it is unlikely that complexing 

proteins are essential for the stability of the 900 kDa toxin 

complex at physiologic pH or for limiting diffusion of the 

150 kDa botulinum toxin type A after injection of conven-

tional botulinum toxin type A drugs. The rapid dissociation 

of neurotoxin from the toxin complexes under physiologic 

conditions may also explain the similar adverse effect profile 

of Xeomin and conventional botulinum toxin type A drugs 

that contain complexing proteins.9,10,30 Although the injected 

product is different, the rapid dissociation would lead to the 

generation of the same active agent, ie, the 150 kDa botuli-

num toxin type A, eliciting the same diffusion characteristics 

and therapeutic effects. Indeed, earlier in vivo studies using 

different botulinum toxin type A drugs and a preparation of 

the free botulinum toxin type A (150 kDa) have shown that 

diffusion from the injection site does not differ between 

preparations.31 Similarly, studies using radiolabeled botuli-

num toxin type A have shown that there was no difference 

in the distribution of the free botulinum toxin type A or 

complexed botulinum toxin type A at or outside the injec-

tion site, even when using high doses.23 In the past, some 

confusion has occurred when comparing diffusion charac-

teristics between different botulinum toxin type A drugs in 

the clinical setting.22 For example, a review comparing the 

area of anhidrotic effect between Botox and Dysport con-

cluded that the diffusion of the two drugs differed as a result 

of numerous factors, including molecular size, dosing, and 

injection technique.21 However, the comparison failed to take 

into account the different potencies of the two drugs, which 

resulted in different anhidrotic areas.22,28 When botulinum 

toxin type A efficacy was evaluated by anhidrotic area across 

a range of Botox:Dysport dose ratios (1:2.5, 1:3, 1:4)32 and 

electromyography using a 1:3 Botox:Dysport dose ratio,33 

the different drugs were found to produce similar results. In 

contrast, one report demonstrated that Dysport had a greater 

area of diffusion in the forehead than Botox.34

Further evidence for a lack of effect of complexing 

proteins on botulinum toxin type A diffusion comes from 

clinical studies in which compound muscle action potential 

(CMAP) M-wave amplitudes were measured in patients 

receiving Xeomin or Botox. In a Phase I study, 14 healthy 

male  volunteers received repeated injections of Xeomin 

or Botox into the extensor digitorum brevis muscle of 

each foot.35 There were no statistically significant differ-

ences between the two treatments in terms of degree of 

paralysis, onset of action, or duration of paralysis (although 

time to onset of action was slightly earlier with Xeomin). 

This indicates their similar efficacy and diffusion profiles, 

neither showing any effect in adjacent muscles. In another 

Phase I study of similar design, no significant differences 

between Xeomin and Botox were observed in 32 healthy 

male volunteers.36 Furthermore, measurements in adjacent 

muscles found that CMAP M-wave amplitudes were greater 

than 80% of baseline at all post-injection visits (Figure 2),36 
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Figure 2 Mean values of abductor hallucis muscle compound muscle action potential M-wave amplitudes are above threshold of effect after injection of NT 201 (Xeomin®) 
or BTXCo (Botox®) into the extensor digitorum brevis, indicating no relevant diffusion-induced effect in adjacent muscles.
Copyright© 2007. Adapted with permission from wolters Kluwer Health. wohlfarth K, Muller C, Sassin i, et al. Neurophysiological double-blind trial of a botulinum 
neurotoxin type a free of complexing proteins. Clin Neuropharmacol. 2007;30:86–94.36

Abbreviation: CMAP, compound muscle action potential.

suggesting no difference in diffusion-induced reduction of 

muscle activity. The diffusion of different botulinum toxin 

type A drugs was also investigated in a mouse study using 

a high-sensitivity test for muscle expression of neural cell 

adhesion molecule, which does not occur under physiologic 

conditions.37 Results of the neural cell adhesion molecule 

assay showed that injection of Botox, Dysport, and Xeomin 

(1:4:1 ratio) led to limited diffusion of botulinum toxin 

type A into adjacent muscles, with no significant differences 

between the formulations.

Another postulated effect of complexing proteins in 

a therapeutic context could be to enhance the stability of 

the botulinum toxin type A drug during storage. However, 

 studies of Xeomin do not corroborate this proposal.38 

The stability of Xeomin was evaluated in long-term storage 

studies and in short-term temperature-stress studies.38 The 

studies evaluated the neurotoxin content (via enzyme-linked 

immunosorbent assay), sucrose content (via enzymatic 

assay), and human serum albumin content (via high-pressure 

liquid chromatography) of vials containing Xeomin 

stored at 5°C or 25°C, as well as the biologic activity of 

the neurotoxin (mouse median lethal dose [LD
50

]). After 

48 months of storage at room temperature or in a refrigerator, 

no significant changes in neurotoxin, sucrose, or human 

serum albumin content or, most importantly, biologic 

activity, were observed in the Xeomin samples (Figure 3, 

data on file, Merz Pharmaceuticals GmbH).38 In contrast, 

all other licensed botulinum toxin type A drugs containing 

 complexing  proteins require refrigerated storage.39,40 

Furthermore, storage studies showed that Xeomin was stable 

for at least 18 months at 30°C and for at least six months 

at 40°C (data on file, Merz Pharmaceuticals GmbH).38 In 

short-term temperature-stress studies, all parameters tested 

remained within the release specifications when Xeomin 

was stored at 60°C for one month. At 80°C, the expected 

reduction of biologic activity occurred within five days, 

although proteolytic activity had not fallen to below one-third 

of the initial value after 10 days, with a decline over time 

considerably slower than for biologic  activity. Therefore, it 

appears that the binding and/or translocation domains of the 

neurotoxin are more sensitive to temperature changes than 

the light-chain protease (data on file, Merz Pharmaceuticals 

GmbH).38 Overall, these results demonstrate that complex-

ing proteins are not required to maintain the stability of 

botulinum toxin type A during storage.

Antibody formation  
and its consequences
While complexing proteins do not appear to have an effect 

on botulinum toxin type A stability or limit diffusion from 

the injection site, it is possible that they stimulate antibody 

production against the active neurotoxin. In a mouse study 

using formalin treated botulinum toxin type B (toxoid), the 

amount of neutralizing antibodies produced was greater 

when the botulinum toxin type B was complexed with a large 

toxin complex, compared with the toxoid supplemented with 
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hemagglutins, or when the neurotoxoid was administered 

alone.11 Further analysis showed that HA1 and HA3b were 

responsible for the adjuvant action, with HA2 producing no 

increase in antibody production. The mechanism of increased 

immune response to HA1 and HA3b appeared to be mediated 

by an increase in interleukin-6, leading to increased numbers 

of CD19-positive cells. In vitro enzyme-linked immunosor-

bent assay analysis of antibody binding to botulinum toxin 

type A large toxin complex showed that HA1 accounted for 

most of the immunogenic response.12 Although Attassi41 com-

mented that a formalin-treated neurotoxin (toxoid) was used 

and the experiment does not reflect the therapeutic situation 

in detail, Lee et al showed in the vaccination experiment that 

two HAs could enhance the antibody titer against the antigen 

and act as adjuvants.12

Antibodies against botulinum toxin type A can lead to 

treatment failure. In patients receiving therapeutic treat-

ment with conventional botulinum toxin type A drugs, 

case reports have been published describing patients with 

complete antibody-induced treatment failure using the 

original Botox formulation (20 U/ng) for hemifacial spasm 

(cumulative dose, 96 U)42 or cervical dystonia (cumulative 

dose, 2540 U).43 Similarly, four of 25 patients receiving 

Botox for urologic disorders developed high botulinum 

toxin type A antibody titers, which were associated with 

complete therapy failure in three cases (12% of patients 

overall), and a further four patients had borderline antibody 

titers (32% of patients overall).44 In a pooled analysis of data 

from patients with poststroke upper or lower limb spasticity 

receiving Botox, neutralizing antibodies were detected in 

one of 191 patients (0.5%); this patient (cumulative dose, 

960 U) showed no clinical response to treatment at any 

time.45 Of 880 patients treated with botulinum toxin type A 

for a variety of indications, five (0.6%) were positive for 

neutralizing antibodies, of whom four with cervical dysto-

nia (cumulative Botox exposure, 1200–3100 U) remained 

responsive, while the other patient had poststroke spasticity 

and developed antibodies after a single injection of 200 U 

Botox, with no response to botulinum toxin type A.46 In a 

recent study, four of 326 patients with cervical dystonia 

(1.2%) developed neutralizing antibodies (up to 15 cycles of 

Botox; median, nine cycles; mean cumulative dose, 1576 U), 

three of whom were clinically unresponsive.47 Another study 

found that five of 42 patients (11.9%) developed botulinum 

toxin type A antibodies following treatment with Botox 

(mean cumulative dose, 4610 ± 1936 U) and/or Dysport 

(14,033 ± 7566 U) for spasticity of various etiologies.48 Of 

these five patients, three had low titers (,0.3 mU/mL), one 

had an intermediate titer (0.6 mU/mL) and one had a high 

titer (.1.0 mU/mL) of antibodies.48 Two of the patients with 
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Figure 3 Xeomin® is stable at room temperature (25°C) over 48 months.38 
Reproduced with permission from Merz Pharmaceuticals GmbH, Frankfurt, Germany.
Abbreviation: HSA, human serum albumin.
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low titers remained clinically responsive to therapy, while 

the other three patients were unresponsive to Botox and/or 

Dysport. Thus, the formation of neutralizing antibodies can 

result in partial or complete clinical unresponsiveness to 

botulinum toxin type A.49

The presence of complexing proteins in botulinum 

toxin type A drugs may lead to an increased risk of devel-

opment of neutralizing antibodies. Indeed, the original 

formulation of Botox was six times more likely to elicit 

the production of antibodies than the newer formulation, 

which contains fewer complexing proteins and reduced 

inactive neurotoxin.50 When data were analysed from 149 

patients with cervical dystonia who had received treatment 

with Botox, neutralizing antibodies were detected in four of 

42 patients (9.5%) who had received only the older formu-

lation (100 U/25 ng neurotoxin), compared with none of 

the 119 patients who had received only a newer formula-

tion (with a higher specific biologic activity of 100 U/5 ng 

botulinum toxin type A, P , 0.004).50 Complexing pro-

teins may also be associated with development of non-

neutralizing antibodies, with an estimated 40% of patients 

developing titers of antibodies against C. botulinum 

HA and NTNH molecules, although they do not impact 

upon the efficacy of the neurotoxin.51 Clearly, injection 

with complexed botulinum toxin represents a substantial 

increase in foreign protein load in addition to the 150 kDa 

botulinum toxin type A moiety.

Preliminary experiments with Xeomin suggest that 

the absence of complexing proteins is indeed associated 

with reduced immunogenicity. In a study in Cynomolgus 

 monkeys, repeated four-weekly injections with 4, 8, or 

16 U/kg Xeomin or control were not associated with the 

development of neutralizing antibodies in any animal, 

despite clear evidence of biologic activity of the neurotoxin, 

particularly in the highest dose group.52 However, this study 

lacked a positive control group and, therefore, confirmation 

of these data are required to show that complexing proteins 

result in antibody formation.

The immunogenicity of Xeomin in comparison with that 

of Botox and Dysport was evaluated in New Zealand white 

rabbits.53 After repeated intradermal injection, Xeomin did 

not induce the formation of neutralizing antibodies, unlike 

Botox and Dysport.53 In this study, both Xeomin and Botox 

were administered intradermally into female New Zealand 

white rabbits at 16 U/animal for eight administrations every 

2–8 weeks (data on file, Merz Pharmaceuticals GmbH). 

A final administration of Xeomin 25 U/animal was given 

10 weeks after the eighth injection. Conversely, Dysport 

was given twice weekly at 40 U/kg of animal for five 

administrations, with a lowered dose of 20 U/kg of  animal 

for the final administration, over a period of 13 weeks 

(cumulative dose 220 U/kg of animal; data on file, Merz 

Pharmaceuticals GmbH). Unlike the two conventional botu-

linum toxin type A drugs, Xeomin was not associated with 

the development of neutralizing antibodies in this animal 

model. Indeed, 15 rabbits developed neutralizing  antibodies 

after six injections of Dysport, while four rabbits had 

 neutralizing antibodies following nine injections of Botox 

(data on file, Merz Pharmaceuticals GmbH). Thus, Xeomin 

shows low immunogenicity even using doses four to five 

times higher than the equivalent clinically recommended 

highest doses for humans in therapeutic indications.52,53 

While this suggests that Xeomin presents a lower risk of 

generating antibodies, it remains to be confirmed whether 

these results are reflected in different species, such as 

humans, who may differ in their immune response. How-

ever, emerging data in humans do support these results. For 

example, in a recent study of up to 89 weeks in patients with 

upper limb spasticity who received one injection of Xeomin 

or placebo followed by up to five injections of Xeomin, no 

patient developed neutralizing antibodies throughout the 

study.54 In the clinical development program of Xeomin in 

the US, 12 of 1080 subjects developed antibodies against 

the neurotoxin but each of these patients was previously 

treated with a botulinum toxin product which contained 

complexing proteins and so may have already been primed 

by this treatment.55 For several reasons this outcome cannot 

be compared with other studies, eg, a different assay was 

used with a different sensitivity and specificity. Treatment 

with Xeomin may result in a reduced incidence of antibody-

induced therapy failure after long-term treatment compared 

with conventional botulinum toxin type A drugs but, in 

order to finally resolve this issue, the results of long-term 

comparative trials are required.

Conclusion
Complexing proteins do not contribute to the diffusion 

properties of botulinum toxin products. Furthermore, they 

are not required to stabilize the neurotoxin in the pharma-

ceutical formulation. Xeomin does not contain complexing 

proteins, yet retains safety and efficacy profiles equivalent to 

conventional botulinum toxin type A formulations. It would 

therefore appear that complexing proteins do not contribute 

to the therapeutic effect of botulinum toxin type A  treatment. 

Studies in animals suggest that complexing proteins may 

increase formation of antibodies against botulinum toxin 
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type A, which can lead to the termination of therapy in 

some patients, although further studies in human subjects 

are required to verify this finding.
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